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Abstract

The paper investigates the auto-calibration problem for mobile
device cameras. We extend existing algorithms to get a robust
method that computes internal camera parameters given a series
of distant objects images. The algorithm is tested on real images
generated by several different cameras. We estimate the impact of
errors in camera calibration parameters on the image mosaicing
problem.

Keywords: auto-calibration, stitching, camera parameters, er-
rors effect, real datasets, image mosaicing.

1. INTRODUCTION

The goal of calibration is to determine internal camera param-
eters within the given projection model. The problem arises
in a number of emerging computer vision applications such as
augmented reality, 3D reconstruction, and image mosaicing (or
stitching). As academy and industry becomes gradually more
interested in using mobile devices for computer vision, the im-
portance of phone/tablet cameras calibration is clear.

Nowadays the problem of camera calibration is usually solved
by using special calibration patterns (see [3], [4], [5]). While
pattern-based methods are quite accurate, it can be difficult to
use them due to necessity of taking shots of a special calibration
object like a chessboard. Also, manual calibration harms user
experience that is considered crucial for mobile applications. As
a result software developers and researchers are very interested
in auto-calibration methods.

Auto-calibration is the process of estimating internal camera pa-
rameters directly from multiple uncalibrated images. This area
of computer vision is in active research stage. From one hand
there are papers describing successful attempts of using auto-
calibration methods in practical tasks (e.g. augmented reality,
3D reconstruction, image mosaics, see [7], [8], [9], [11], [12]).
As the topics of these papers aren’t camera auto-calibration it-
self, they don’t contain thorough investigations of the used meth-
ods with numerical evaluation, tested on challenging dataset. As
a consequence, when one faces a computer vision problem that
requires camera parameters, it’s very difficult to select a robust
auto-calibration method and reuse previous results. There is re-
search that is directly devoted to the auto-calibration problem
(see [10], [13]). Unfortunately, these papers either don’t compare
with state-of-the-art pattern-based calibration methods or provide
evaluation for synthetic datasets only. Some of these papers de-
scribe results for real datasets, but obtained under almost ideal
conditions like no noise, no hand shaking, see [13]. So to the best
of our knowledge we are not aware of a research paper that de-
scribes an auto-calibration method and provides sufficient exper-
imental evidence showing robustness for practical applications.

While classical calibration methods are well studied, they suf-
fer from some drawbacks, which follow from the fact that these
methods use some extra information. For instance, there are cal-
ibration methods (see [1]) which require location of vanishing
points (i.e. points where infinite lines are terminated under pro-
jective transformation) as input, but finding of these points auto-
matically is a difficult problem.

This paper shows that under moderate assumptions an autocali-

bration algorithm for rotational cameras presented in [1] can be
used for practical applications with a necessary pre-processing
step. We evaluate an implementation of the method for both sim-
ulated datasets and real image sequences generated by mobile
phone cameras.

2. PROBLEM STATEMENT

We use the following camera model which describes how a 3D
scene point (X,Y, Z)T is projected into an image pixel with co-
ordinates (u, v)T :
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whereK is camera matrix of internal parameters (fx, fy are focal
lengths in pixels, cx, cy are principal point coordinates);R, T are
camera rotation 3×3 matrix and translation 3-dimensional vector
(external parameters); w is scale factor.

The class of auto-calibration methods that we will consider re-
quires an existence of homography mapping between all input
images. The easiest way of generating a sequence of images with
homography relashinship using a mobile camera is to take shots
of distance objects. Hence, within the scope of this paper we will
make an assumption that camera translation T is negligibly small
compared to the distance to the objects. We will call a device with
T = 0 a “rotational camera”.

We formulate the auto-calibration problem in the following way:
given keypoints in input images taken by a rotational camera, and
the keypoint correspondences between images, find the camera
matrix K.

3. CAMERA MATRIX ERRORS EFFECT

The estimation of K is never the final goal of a computer vi-
sion application. So, in order to understand how precise an auto-
calibration method has to be, we need to consider a specific ap-
plication. This section contains a theoretical and experimental
analysis for the image mosaicing problem and provides exper-
imental evaluation on the stitching module of OpenCV library
[18]. Throughout this section we make an assumption that fx
equals to fy for the sake of simplicity and without loss of gen-
erality, as images always can be scaled to achieve of unit pixel
aspect ratio.

It is possible to stitch images without involving camera matrix.
In that case a user wouldn’t be able to select another surface
for projection except for plane, that can be inappropriate for big
panoramas because of big deformations. A plane projection sur-
face generates deformations in the panorama image are visible
when the vector of camera orientation differs a lot from the pro-
jection plane normal. The most convenient projection surface for
the case of rotational cameras is a sphere.
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Below we analyze warping errors when the projection surface is a
sphere. To compute the error for each image we do the following:

1. For each pixel q = (x, y, 1)T of the source image we find
a ray, passing through the corresponding scene point from
camera center, as r = K � 1q, where K is the camera ma-
trix.

2. We find the intersection point (X,Y, Z)T of the ray with
the unit sphere centered at the origin. This point spherical
coordinates u, v after scaling by constant s are point coor-
dinates on the final panorama (s is usually selected being
roughly close to the focal length in pixels):

u = s · tan� 1(
X

Z
) (1)

v = s · (π � cos� 1(
Y√

X2 + Y 2 + Z2
)) (2)

3. To calculate per pixel error we project points using the
ground truth camera matrix
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and its estimation

K(est) =
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where f (rel), c
(rel)
x , c

(rel)
y are estimated camera parameters

relative to the ground truth. The distance between two
points obtained usingK(gt) andK(est) is the warping error
in the pixel p.

According to the presented algorithm we first get two ray direc-
tions:
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Then we use (1) and (2) to get pixels coordinates (u(gt), v(gt))T

and (u(est), v(est))T . The differences between these pixel coor-
dinates are:

uerr = s(tan� 1(
x� c(gt)x

f (gt)
)� tan� 1(

x� c(est)x

f (est)
))

verr = s(�cos� 1(
y � c(gt)y√

(x� c(gt)x )2 + (y � c(gt)y )2 + (f (gt))2
) +

cos� 1(
y � c(est)y√

(x� c(est)x )2 + (y � c(est)y )2 + (f (est))2
))

The final pixel warp error equals to
√
u2
err + v2err . We assess

warping errors for the case of 2048× 1536 images and using the
following camera matrix as a reference:

K(gt) =



W +H 0 W

2
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2

0 0 1




where W and H are image width and height respectively. The
warping error function charts for 5% relative errors in camera
internal parameters are shown in figures 1, 2, and 3.

Figure 1: Pixel warp error for f (rel) = 1.05.

Figure 2: Pixel warp error for c(rel)x = 1.05.

Figure 3: Pixel warp error for c(rel)y = 1.05.

We can see from charts, that when relative error in camera pa-
rameters is 5% warp error reaches 60 pixels, that seems to be
high enough for leading to visible artifacts.

In order to evaluate the artifacts, we stitched 1536×2048 images
using camera matrix K(pt) as ground truth K(gt), where K(pt)

was the camera matrix obtained via a pattern based calibration
method. Also we did experiments using camera matrix K(est),
where each parameter was modified (one at a time) to get 10%
error (relative to K(pt)). We got panoramas without visible ar-
tifacts, see figures 4 and 5. Small artifacts are highlighted with
red color, but the quality of the panoramas is much higher that
we could expect from theoretical analysis. Such results are ob-
tained because current stitching applications (including the one
used for testing) use seam estimation methods to minimize vis-
ible artifacts, see [14]. After estimating seams special blending
methods are used to hide discrepancies between images, see [15].
So even if the image registration step introduces moderate errors,
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a combination of modern seam estimation and blending methods
can remove a lot of possible artifacts. But if errors in camera pa-
rameters is too high then it’s almost impossible to hide stretches
and other artifacts, see figure 6 with results for f (rel) = 0.7 (i.e.
30% relative error)

Figure 4: Left, right source images and panorama obtained with
K(pt).

Figure 5: Panoramas for f (rel) = 1.1, c(rel)x = 1.1, and c(rel)y =
1.1 respectively.

Figure 6: Panorama for f (rel) = 0.7 with visible artifacts and
stretches.

Also it should be mentioned that motions between images are es-
timated to minimize overall re-projection error (that is minimiz-
ing visible mis-registration error) according to the current camera
matrix. This step is very important as minimizing re-projection
errors leads to minimizing visible artifacts even if the camera ma-
trix was estimated inaccurately. figure 7 shows stitching results of
two images with relative motion estimated using K(pt) and with
relative motions refined to minimize re-projection errors under
assumption that f (est) = f (pt)f (rel) where f (rel) = 1.1.

From these results it follows that if one has a high quality stitch-
ing algorithm then the effect of errors in camera matrix isn’t very
high, and methods less accurate than pattern based calibration can
be used for camera parameters estimation. This is a good appli-
cation for auto-calibration that is not as precise as pattern-based

Figure 7: Panorama for f (rel) = 1.1 and refined motion vs.
panorama for f (rel) = 1.1 and motion obtained using K(pt).

calibration but still generates a reasonable estimation of internal
camera parameters.

4. AUTO-CALIBRATION ALGORITHM

A robust auto-calibration algorithm faces many challenges com-
ing from data generated by a mobile device. Some input im-
ages can be noisy, can differ in illumination, and undesired ob-
jects such as user fingers can be present in the camera field of
view. All these issues can affect the quality of extracted features,
and can lead to mis-registration. Hence, let alone the core auto-
calibration problem, we have to address these issues. This is why
we start with a description of our registration algorithm.

The outputs of the registration algorithm is the images graph,
where vertices are images from the input image sequence, and
two images are connected with the edge iff we were able to regis-
ter them with a homography transformation. Here is the descrip-
tion of the registration pipeline:

1. Find keypoints and their descriptors of each image. We use
SURF detector and descriptor implemented in OpenCV li-
brary, see [16].

2. For each image pair find matches between keypoints. We
use FLANN matcher integrated into OpenCV library, see
[17].

3. For each image pair estimate 2D homography and compute
number of inlier matches, see 4.1.

4. For each image pair determine whether matches between
these images are trustworthy, see section 4.1. The decision
is made for image pair, not for each match. So if we’re
confident then we add an edge between two corresponding
vertices into images graph.

5. Retain the biggest connected component from the images
graph. Also retain only matches for confident image pairs
and continue working with this connected component.

4.1 Computing match confidence

We follow the method proposed in [2], where it is applied to ex-
tract a subset of images from the original raw set for subsequent
stitching.

Suppose we have nf feature matches. The correctness of an im-
age match is represented by the binary variable m ∈ {0, 1}. The
event that the ith feature match f (i) ∈ {0, 1} is an inlier/outlier
is assumed to be independent Bernoulli event, so the total number
of inliers ni is Binomial. Ifm = 1 then ni has theB(ni;nf , p1)
distribution function, and B(ni;nf , p0) otherwise, where p1 is
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the probability that a feature is an inlier given a correct image
match, and p0 is the probability a feature is an inlier given a false
image match.

Here is the final criterion used by the authors to accept an image
match

B(ni;nf , p1)P (m = 1)

B(ni;nf , p0)P (m = 0)
≥ pmin

1� pmin
(5)

Choosing the values for p1 = 0.6, p0 = 0.1, P (m = 1) = 10 � 6

and pmin = 0.999 gives the condition

ni > α+ βnf (6)

for a correct image match, where α = 8.0 and β = 0.3. We
decide whether a feature match is an inlier or an outlier by com-
paring reprojection error with a fixed threshold. We used the
same value of 3 pixels for all datasets and that value worked
good enough in practice, while for each particular dataset another
threshold value can be better.

The value ni
α+βnf

is used as the measure of confidence that it
makes sense to use matches between an image pair. If it’s greater
than 1 then an image match is correct, false otherwise. In some
practical cases it could be useful to increase this threshold as was
found in experiments.

Figure 8 shows how reprojection error threshold affects on aver-
age camera parameters estimation relative error Q for one of real
datasets.

Q =
1

4
(|f (rel)

x �1|+|f (rel)
y �1|+|c(rel)x �1|+|c(rel)y �1|) (7)

Figure 8: Reprojection error threshold effect on camera param-
eters estimation errors. When the threshold is too low the al-
gorithm is too sensitive to noise, while in the case of too high
threshold even incorrect matches can be classified as inliers.

4.2 Rotational camera auto-calibration

For auto-calibration we use the algorithm for the rotation only
cameras case proposed in [1]. Here is the brief description of that
algorithm:

1. Normalize the homographies Hi,j between views i and j
such that detHi,j = 1.

2. Compute ω = (KKT ) � 1 from the equations

ω = HT
j,iωHj,i

for all image pairs i, j.

No. of
images Distance (m) Relative errors (%)

f
(err)
x f

(err)
y c

(err)
x c

(err)
y

6 2 8.5 11.1 4.7 4.6
7 0.5 -3.8 -2.6 -12.4 -6.2
9 2 -3.4 0.1 2.5 5.4
13 2 2.6 7.6 1.5 8.9
14 30 5.6 6.5 -1.9 4.2

Table 1: Relative errors for the auto-calibration of Nokia 6303C
camera.

3. Compute K solving ω = (KKT )
� 1

with the Cholesky
decomposition.

4. Refine K by minimizing the re-projection error function

err(K,R1, ..., Rn) =
∑
i,j,k ‖x

(k)
j �Hi,jx

(k)
i ‖

using parametrization of Hi,j = KRjR
T
i K

� 1 over cam-
era rotations Ri, Rj and camera matrix K, where n is the
number of images and x(k)i , x

(k)
j are the position of k-th

point measured in the i-th and j-th images respectively. We
parametrize a rotation with a 3-dimensional vector directed
parallel to the rotation axis and with the length equal to the
rotation angle.

5. EXPERIMENTS

We performed experiments on real datasets taken with Nokia
6303C mobile phone (1536 × 2048 resolution) and Logitech
QuickCam Pro 900 (1600× 1200 resolution).

5.1 Nokia 6303C

Table 1 presents results we got using Nokia 6303C camera. We
compare the auto-calibration results with pattern-based calibra-

tion: f (err)
x = f

(rel)
x � 1 = f

(est)
x

f
(pt)
x

� 1. The auto-calibration al-

gorithm gives relative errors less than 10% on 3 out of 5 datasets.
We have showed before that a relative error of less than 10%
in camera parameters is enough for getting visually acceptable
panoramas.

There are two factors affecting calibration quality. The first fac-
tor is the number of images in input dataset, because if the in-
put dataset is too small then it doesn’t provide enough informa-
tion for camera auto-calibration. The second factor is non-zero
translation presence, as the auto-calibration method we use was
designed under the rotational camera assumption. This assump-
tion is easily violated in practice as a user tends to rotate camera
not around its optical center, but around device center (or itself),
which is not the same.

5.2 Logitech QuickCam Pro 900

Table 2 presents result we got using Logitech QuickCam Pro 900
camera. For this camera we achieved the relative error less than
9% in comparison with OpenCV pattern based calibration results.

6. TRANSLATION NOISE IMPACT

We also performed experiments on synthetic data to analyze the
dependence between camera parameters estimation errors and the
translation between camera positions. We created a synthetic
scene consisting of 1000 points located randomly on a unit sphere
(uniformly in spherical coordinates) centered at the world frame
origin and a camera located at the point (0, 0,�10)T directed
to the origin. We rotated the camera randomly to generate a se-
quence of images. The number of shots was uniformly distributed
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No. of
images Distance (m) Relative errors (%)

f
(err)
x f

(err)
y c

(err)
x c

(err)
y

10 2 0.5 5.3 3.6 -0.3
30 2 1.2 4.4 0.7 2
57 2 0.3 3.1 1.5 3.2
10 2 -1.8 0.7 -2.5 1.3
30 2 1.9 6 -0.3 8.6
74 2 0.1 4.3 0.2 7.6

Table 2: Relative errors for the auto-calibration of Logitech
QuickCam Pro 900.

in the region [3, 30]. Camera position translation noise was gen-
erated uniformly in range [�t, t] where t ∈ [0, 0.07] (distributed
uniformly between experiments). Experimental results are shown
in figure 9. It should be mentioned that in the case of high noise
translation error the auto-calibration method is unstable and the
method can end up with no solution. That’s why we have less
points on the figure when t is high.

Figure 9: Translation noise effect on camera parameters estima-
tion errors.

The chart implies that the camera parameters estimation errors
are highly correlated with translational noise. A 3D reconstruc-
tion from images can be done only up to a scale, so instead of
using absolute values in the chart we plot the ratio of the trans-
lation noise level to the distance from the camera to the nearest
object in the scene.

From what we said above follows, that in practice one must try to
take shots of distant objects or select images from source dataset
where objects are distant. For distant objects homography reg-
istration will be more accurate, so in principle we can filter out
close objects by high re-projection error.

According to the chart, one can say that in order to get a relative
auto-calibration error about 10% it is recommended to make sure
that the camera translation component divided by the distance to
the objects is less than 0.025

10
(according to the chart 0.025 trans-

lation noise corresponds to 10% level of auto-calibration error,
where 10 is the distance from the camera to the sphere). That
means about 2.5 cm shaking amplitude in case of 10 m distance
must be ensured to get about 10% errors.

7. CONCLUSION

In our work we investigated the problem of auto-calibration for
the case of rotational cameras and built a robust auto-calibration
pipeline, which were tested successfully on real datasets.

We performed analysis of error in camera parameters impact on
final results in such computer vision problem as image mosaic-
ing, and showed that using modern stitching algorithms relaxes
requirements on camera parameters accuracy, when theoretically
errors in camera parameters can lead to big warping errors.

It is possible to calibrate cameras without patterns, but the main
point is that the quality of input data is important for achieving
accurate auto-calibration. For the case of rotational cameras auto-
calibration it is necessary to ensure that translation noise relative
to distance from camera to the nearest object is small enough.
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PANORAMAS

In this section we show panoramas that were obtained using
OpenCV stitching pipeline [18] with camera parameters obtained
with the described auto-calibration method.
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